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Abstract. This paper deals with an unusual phenomenon where most
machine learning algorithms yield good performance on the training set
but systematically worse than random performance on the test set. This
has been observed so far for some natural data sets and demonstrated
for some synthetic data sets when the classification rule is learned from
a small set of training samples drawn from some high dimensional space.
The initial analysis presented in this paper shows that anti-learning is a
property of data sets and is quite distinct from over-fitting of a training
data. Moreover, the analysis leads to a specification of some machine
learning procedures which can overcome anti-learning and generate ma-
chines able to classify training and test data consistently.

1 Introduction

The goal of a supervised learning system for binary classification is to classify
instances of an independent test set as well as possible on the basis of a model
learned from a labeled training set. Typically, the model has similar classifica-
tion behavior on both the training and test sets, i.e., it classifies training and
test instances with precision higher than the expected accuracy of the random
classifier. Thus it has what we refer to as “the learning mode”. However, there
are real life situations where better than random performance on the training
set yields systematically worse than random performance on the off-training test
set. One example is the Aryl Hydrocarbon Receptor classification task in KDD
Cup 2002 [3, 9, 11]. These systems exhibit what we call “the anti-learning mode”.
As it has been discussed in [8], anti-learning can be observed in publicly available
microarray data used for prediction of cancer outcomes, which can show both
learning and anti-learning mode, depending on the features selected.

In this paper however, we focus on synthetic data which facilitates rigorous
analysis. The aim is to demonstrate rigorously that anti-learning can occur, and
can be primarily a feature of the data as it happens for many families of al-
gorithms, universally across all setting of tunable parameters. In particular, we
analyse a task of classification of binary labeled vertices of a class symmetric
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polyhedron embedded in a sphere (Section 2). The classification task seems to
be very easy: the data is linearly separable and any two labeled vertices deter-
mine all labels. However, this simplicity is very deceptive: we prove in Section 3
that none of the wide range of well establish algorithms such as perceptron, Sup-
port Vector Machines, generalised regression, κ-nearest neighbours can learn to
classify consistently the data. In fact, given a proper subset of the domain to
train, they can easily learn to classify it, but they always totally misclassify the
remaining data. This effect is very different from poor generalization abilities
where a classifier would perform close to random: here the predictions on the
test set are not random, they are exactly the opposite of what they should be. In
Section 3.2 we show that there exists kernel transformations which can actually
change perfect anti-learning data into perfectly learnable data. Finally, Section 4
discuses the results.

2 Geometry of Class Symmetric Kernels

Let S be a set of labeled examples {(xi, yi)}i∈S ⊂ X×{−1, +1} indexed uniquely
by the index set S, with X ⊂ RN . We are interested in classification rules of the
form sign ◦ f : X → {−1, +1}, where f = A(T ). A may also depend on some
hyperparameters such as kernel k : X×X → R, the regularization constant, etc.

2.1 Performance Measures

Assume we are given f : X → R and a non-void test subset

T = {(xi, yi)}i∈T ⊂ S

indexed uniquely by T ⊂ S and containing samples from both labels.

Accuracy We define the accuracy of the decision rule x 7→ sign(f(x)) as

acc(f, T ) =
1
2

∑
y=±1

PT

(
yjf(xj) > 0 | yj = y

)

Here PT denotes the frequency calculated for the subset T ⊂ S. Note this is the
balanced performance measure, independent of prior distribution of data classes.

Area Under ROC For f as above, we use the Area under the Receiver Oper-
ating Characteristic curve, AROC(f, T )3, the plot of true vs. false positive rate,
as another performance measure. Following [1] we use the formula

aroc(f, T ) = PT

(
f(xi) < f(xj) | yi = −1, yj = 1

)

+
1
2
PT

(
f(xi) = f(xj) | yi 6= yj

)

3 Also known as the area under the curve, AUC; it is essentially the well known order
statistics U .
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Note that the second term in the above formula takes care of ties, when instances
from different labels are mapped to the same value.

The expected value of both aroc(f, T ) and acc(f, T ) for the trivial, uni-
formly random predictor f , is 0.5. This is also the value for these metrics for
the trivial constant classifier mapping all T to a constant value, ±1. Note the
following fact:

aroc(f, T ) = 1 ⇔ ∃C, ∀i ∈ T, yi(f(xi)− C) > 0; (1)
aroc(f, T ) = 0 ⇔ ∃C, ∀i ∈ T, yi(f(xi)− C) < 0. (2)

Remark 1. [AK 20/07: ] There are at least two reasons why we use aroc in
this paper.

1. aroc is a widely used measure of classifier performance in practical applica-
tions, especially biological and biomedical classification. As we have indicated
in the introduction, some biomedical classification problems are the ultimate
target this paper is a step towards, so explicit usage of aroc makes a direct
link to such applications.

2. aroc is independent of an additive bias term while accuracy or error rate
are critically dependent on a selection of such a term. For instance, acc(f +
b, T ) = 0.5 for any b ≥ max(f(T )), even if acc(f, T ) = 0. Typically, in such
a case other intermediate values for acc(f + b′, T ) could be also obtained
for other values of the bias b′. However, aroc(f + b, T ) = const, since aroc
depends on the order in the set (f + b)(T ) ⊂ R and this is independent of
the additive constant b. (Note that modulo a constant factor, aroc is a well
known order statistic U [1].) ¤

2.2 Class Symmetric Matrices

Now we introduce the basic object for theoretical analysis in this paper. In order
to simplify deliberations we consider synthetic datasets for which the entries in
the Gram matrix depend only on the classes of the corresponding points.

Definition 1. A matrix [kij ]i,j∈S is called class symmetric if there exists con-
stants r > 0 and cy ∈ R for y ∈ {0,±1} such that for i, j ∈ S,

kij := k(xi,xj) =





r2, i = j
r2cyi , yi = yj , i 6= j
r2c0, yi 6= yj

(3)

We will also say that the kernel k is class symmetric on S.

Now we establish a necessary and sufficient condition on the coefficients of
this matrix for it to be a positive definite kernel matrix.

Lemma 1. The following conditions are equivalent:
(i) For Dy := 1−cy

ny
+ cy, where ny := |i ∈ S ; yi = y| for y = ±1 we have

D+D− > c2
0, Dy > 0 and 1− cy > 0 for y = ±1; (4)
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(ii) The matrix [kij ]i,j∈S defined by (3) is positive definite;
(iii) There exist linearly independent vectors zi ∈ R|S|, such that kij = zi ·zj

for any i, j ∈ S.

See Appendix for the proof.
The points zi as above belong to the sphere of radius r and the center at

0 ∈ R|S|. They are vertices of a class symmetric polyhedron, (CS-polyhedron),
of n = |S| vertices and n(n + 1)/2 edges. The vertices of the same label y
form an ny-simplex, with all edges of constant length dy := r

√
2− 2cy, y =

±1. The distances between any pair of vertices of opposite labels are equal to
d0 := r

√
2− 2c0. Note that the linear independence in Lemma 1 insures that

the different labels on CS-polyhedron are linearly separable.
It is interesting to have a geometrical picture of what happens in the case

cy < c0, y± 1. In that case, each point is nearer to all the points of the opposite
class than to any point of the same class. In this kind of situation, the nearest
κ-neighbors classifier would obviously lead to anti-learning. Thus we have:

Proposition 1. Let κ > 1 be an odd integer, k be an CS-kernel on S, and T
contains > κ/2 points from each label. If cy < c0 for y ± 1, then the κ-nearest
neighbours algorithm fκ based on the distance in the feature space, ρ(x,x′) :=√

2r2 − 2k(x,x′), will allocate opposite labels to every point in S, i.e. acc(fκ, S) =
aroc(fκ, S) = 0.

[AK 21/07:] An example of four point perfect subset S ⊂ R3 satisfying as-
sumptions of this Proposition is given in Figure 1.

The geometry of CS-polyhedron can be hidden in the data. An example
which will be used in our simulations follows.

Example 1 (Hadamard matrix). Hadamard matrices are special (square) orthog-
onal matrices of 1’s and -1’s. They have applications in combinatorics, signal
processing, numerical analysis. An n × n Hadamard matrix, Hn, with n > 2
exists only if n is divisible by 4. The Matlab function hadamard(n) handles only
cases where n, n/12 or n/20 is a power of 2. Hadamard matrices give rise to
CS-polyhedrons So(Hn) =

{
(xi, yi)

}
i=1,...,n

⊂ Rn−1. The recipe is as follows.
Choose a non-constant row and use its entries as labels yi. For data points,
x1, ...,xn ∈ Rn−1, use the columns of the remaining (n− 1)× n matrix. An ex-
ample of 4× 4-Hadamard matrix, the corresponding data for the 3-rd row used
as labels and the kernel matrix follows :

H4 =




1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1


 ; y =




1
1

−1
−1


 ; [x1, ...,x4] =




1 1 1 1
1 −1 1 −1
1 −1 −1 1


 ;

[kij ] =




3 −1 1 1
−1 3 1 1

1 1 3 −1
1 1 −1 3


 .
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Fig. 1. Elevated XOR - an example of the perfect anti-learning data in 3-dimensions.
The z-values are ±ε. The linear kernel satisfies the CS-condition (3) with r2 = 1 +
ε2, c0 = −ε2r−2 and c−1 = c+1 = (−1 + ε2)r−2. Hence the perfect anti-learning
condition (6) holds if ε < 0.5. It can be checked directly, that any linear classifier
such as perceptron or maximal margin classifier, trained on a proper subset misclassify
all the off-training points of the domain. This can be especially easily visualized for
0 < ε ¿ 1.

Since the columns of Hadamard matrix are orthogonal, from the above con-
struction we obtain xi ·xj+yiyj = nδij . Hence the dot-product kernel k(xi,xj) =
xi · xj satisfies (3) with c0 = −cy = 1/(n− 1) and r2 = n− 1.

[AK20/07: ] Note that the vectors of this data set are linearly dependent,
hence this set does not satisfy Lemma 1 (condition (iii) does not hold). It is
instructive to check directly that the fist inequality in (ii) is violates as well.
Indeed, in such case we have Dy = 1

n−1 , hence the equality D+D− = c2
0 holds.

In order to comply strictly with Lemma 1, one of the vectors form So(Hn)
has to be removed. After such removal we will have a set of n − 1 vectors in
the n− 1 dimensional space which are linearly independent. This can be easily
checked directly, but also we check equivalent condition (ii) of Lemma 1. Indeed,
in such a case we obtain D+ = n+2

(n−1)(n−2) and D− = 1
n−1 assuming that the

first, constant vector (with the positive label) has been removed. Hence,

D+D− =
n + 2

(n− 1)2(n + 2)
>

1
(n− 1)2

= c2
0

and all inequalities in (4) hold.

We shall denote this truncated Hadamard set by S(Hn).
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3 Perfect Learning/Anti-Learning Theorem

Standing Assumption: In order to simplify our considerations, from now
on we assume that ∅ 6= T ⊂ S is a subset such that both T and S\T contain
examples from both labels.

Now we consider the class of kernel machines [4, 12, 13]. We say that the
function f : X → R has a convex cone expansion on T or write f ∈ cone(k, T ),
if there exists coefficients αi ≥ 0, i ∈ T, such that α 6= 0 and

f(x) =
∑

i∈T
yiαik(xi,x) for every x ∈ X. (5)

As for the κ-nearest neighbours algorithm, see Proposition 2 of Section 2.2,
the learning mode for kernel machines with CS-kernel depends on the relative
values of cy and c0. More precisely, the following theorem holds.

Theorem 1. If k is a positive definite CS-kernel on S then the following three
conditions (the perfect anti-learning) are equivalent:

cy < c0 for y = ±1, (6)
∀T ⊂ S, ∀f ∈ cone(k, T ), aroc(f, S\T ) = 0, (7)

∀T ⊂ S, ∀f ∈ cone(k, T ), ∃b ∈ R, acc(f + b, S\T ) = 0, (8)

Likewise, the following three conditions (the perfect learning) are equivalent

cy > c0 for y = ±1, (9)
∀T ⊂ S, ∀f ∈ cone(k, T ), aroc(f, S\T ) = 1, (10)

∀T ⊂ S, ∀f ∈ cone(k, T ), ∃b ∈ R, acc(f + b, S\T ) = 1, (11)

[It would be good to have in the discussion something about the case
cy < c0 < c−y.]

Proof. For f as in (5), (3) holding for the CS-kernel k and b :=
∑

i∈T αiyic0, we
have

yj

(
f(xi)− b

)
= yj

∑

i∈T
αiyi(kij − c0) =

∑

i∈T,yi=yj

αi(cyj − c0)−
∑

i∈T,yi 6=yj

αi(c0 − c0)

=
{

< 0, if (6) holds;
> 0, if (9) holds;

for j ∈ S − T. This proves immediately the equivalences (6) ⇔ (8) and (9) ⇔
(11), respectively. Application of (1) and (2) completes the proof. ut
Example 2. We discuss the Theorem 1 on example of elevated XOR, see Figure
1. In this case our standing assumption requires that both T and S\T contain
examples from both labels, so each must contain two points. Assume T = {1, 2},
S\T = {3, 4} and y2 = y4 = +1. For the linear kernel klin, the classifier f ∈
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cone(klin, T ) has the form f(x) = w · x + b, where x,w = α1x1 − α2x2 ∈ R3,
where α1, α2 ≥ 0. This classifier orders training points consistently with the
labels, i.e. satisfies the condition aroc(f, T ) > 0.5 or equivalently f(x2) > f(x1)
iff the angle between vectors w and x2−x1 is > π

2 . Similarly, aroc(f, S\T ) > 0.5
iff the angle between vectors w and x4 − x3 is > π

2 .
It straightforward to check that for w as above,

cos(x2 − x1,w) ≤ 2−0.5

√
1 +

ε2

1 + ε2
,

hence cos(x2 − x1,w) < π
4 + ε2. Now we can check that

cos(x2 − x1,x4 − x3) = −1 +
4ε2

1 + 2ε2

hence angle(x2 − x1,x4 − x3) > π − 4ε2. This implies that angle(x4 − x3,w) >
3
4π − 5ε2 > π

4 , if ε <
√

3
20π. Thus the test set samples are miss-ordered and

aroc(f, S\T ) = 0. ut

A number of popular supervised learning algorithms outputs solutions f(x)+
b where f ∈ cone(k, T ) and b ∈ R. This includes the support vector machines
(both with linear and non-linear kernels) [2, 4, 12], the classical or the kernel
or the voting perceptron [5]. The class cone(k, T ) is convex, hence boosting
of weak learners from cone(k, T ) produces also a classifier in this class. Others
algorithms, such as regression or the generalized (ridge) regression [4, 12] applied
to the CS-kernel k on T , necessarily output such a machine. Indeed the following
proposition holds

Proposition 2. Let k be a positive definite CS-kernel on S. The kernel ridge
regression algorithm minimizes in feature space,

R = λ‖w‖2 +
∑

i∈T

ξ2
i , with ξi := 1− yi(w · Φ(xi) + b),

and the optimal solution x 7→ w · Φ(x) ∈ cone(k, T )

Proof. It is sufficient to consider the linear case, i.e. f(x) = w · x + b. Due to
the linear independence and class symmetry in vectors xi, the vector w has the
unique expansion

λw =
∑

i

yiξixi = n+ξ+

∑

i,yi=+1

xi − n−ξ−
∑

i,yi=−1

xi.

Both slacks ξ+ and ξ− are ≥ 0 at the minimum. Indeed, if one of them is < 0, we
can “shrink” ‖w‖, i.e. the replacement w ← aw, where 0 < a < 1, and adjust b,
in a way which will decrease the magnitude of this slack leaving the other one
unchanged. So R would decrease. This contradicts that (w, b) minimizes R. ut
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3.1 Transforming the kernel matrix

Consider the case where the linear kernel klin(xi,xj) := xi · xj applied to some
data (such as the Hadamard matrix) yields a CS-kernel for which anti-learning
occurs (i.e. cy < c0, y ± 1 from the Theorem 1). A natural question arises: can
we instead apply a non-linear kernel which would suppress anti-learning?

First note that several non-linear kernels can be expressed as a composition
with the linear kernel k = ϕ ◦ klin. For instance, the polynomial kernel of degree
d, kd = (klin + b)d or the Gaussian kernel

kσ(xi,xj) = exp
(
−‖xi − xj‖2

σ2

)
= exp

(
−‖xi‖2 + ‖xj‖2 − 2klin(xi,xj)

σ2

)
.

If k is a class symmetric kernel satisfying (3) then kσ = exp
(−2(r2 − k)/σ2

)
,

thus it is a composition of kσ = ϕ1 ◦ k, where ϕ1 : ξ ∈ R 7→ exp
(−2(r2 − ξ)/σ2

)
is a monotonically increasing function. Similarly, for the odd degree d = 1, 3, ...
we have kd = ϕ2 ◦ k, where ϕ2 : ξ ∈ R 7→ (ξ + b)d, ξ ∈ R, is a monotonically
increasing function.

But when this composition function is a monotonically increasing one, the
relative order of cy and c0 in the new non-linear kernel matrix will be unchanged
and anti-learning will persist.

Corollary 1. Let k, k′ be two positive definite kernels on S such that k′ = ϕ ◦ k
where ϕ : R→ R is a function monotonically increasing on the segment (a, b) ⊂
R containing all c−1, c+1 and c0. Then if one of these kernels is class symmetric,
then the other on is too; if one is perfectly anti-learning (perfectly learning,
respectively), then the other one is too.

In the next section, we introduce a non-monotonic modification of the kernel
matrix which can overcome anti-learning.

3.2 From Anti-Learning to Learning

Consider the special case of a CS−kernel with c0 = 0, i.e. when examples from
opposite labels are positioned on two mutually orthogonal hyperplanes. Accord-
ing to theorem 1, anti-learning will occur if cy < 0, for y ∈ {±1}. A way to
reverse this behavior would be for instance to take the absolute values of the
kernel matrix such that the new cy becomes positive. Then, according to Theo-
rem 1 again, perfect learning could take place.

This is the main idea behind the following theorem which makes it possible
to go from anti-learning to learning, for the CS-kernel case at least. Its main
task here is to establish that the new kernel matrix is positive definite.

Theorem 2. Let k be a positive definite CS-kernel on S and ϕ : R → R be a
function such that ϕ(0) = 0 and

0 < ϕ(−θ) ≤ ϕ(θ) ≤ ϕ(θ′) for 0 < θ ≤ θ′. (12)

Then kϕ := ϕ(k−c0), is a positive definite CS-kernel on S satisfying the perfect
learning condition (9) of Theorem 1.
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[AK20/07]Note that this theorem shows an advantage of using kernels for for-
mulation results of this paper. The claims of this result are straightforward to
formulate and prove using CS-kernels but next to impossible do it directly.

Proof. It is easy to see that the kernel kϕ satisfies conditions (3) of CS-symmetry
with coefficients r2

ϕ := ϕ(r2(1 − c0)) > 0, cϕ,0 = 0 and cϕ,y := ϕ
(
r2(cy −

c0)
)
/ϕ

(
r2(1 − c0)

)
> cϕ,0 = 0 for y = ±1. Now a straightforward algebra gives

the relation

Dϕ,y =
1− cϕ,y

my
+ cϕ,y ≥ cϕ,y

(
1− 1

ny

)
> 0 = |cϕ,0|,

hence the first condition of (4) holds. The second condition of (4) is equivalent
to ϕ

(
r2(cy − c0)

)
< ϕ

(
r2(1 − c0)

)
. When cy − c0 ≥ 0, this is satisfied thanks

to (12) and the second condition of (4). When cy − c0 ≤ 0, we have 2c0 − cy <

cy +2 1−cy

ny
= cy(1− 2

ny
)+ 2

ny
< 1, the first (resp. second) inequality coming from

the first (resp. second) condition of (4). This gives −(cy − c0) < 1− c0 and the
desired result through (12). ut

The examples of functions ϕ satisfying the above assumptions are θ 7→ |θ|d,
d = 1, 2, ..., leading to a family of Laplace kernels |k − c0|d [13]; this family
includes polynomial kernels (k − c0)d of even degree d. This is illustrated by
simulation results in Figure 2.

4 Discussion

CS-polyhedrons in real life. The CS-polyhedron is a very special geometrical
object. Can it emerge in more natural settings? Surprisingly the answer is posi-
tive. For instance, Hall, at. al. have shown that it emerges in a high dimensions
for low size sample data [6]. They studied a non-standard asymptotic, where
dimension tends to infinity while the sample size is fixed. Their analysis shows a
tendency for the data to lie deterministically at the vertices of a CS-polyhedron.
Essentially all the randomness in the data appears as a random rotation of this
polyhedron. This CS-polyhedron is always of the perfect learning type, in terms
of Theorem 1. All abnormalities of support vector machine the authors have
observed, reduce to sub-optimality of the bias term selected by the maximal
margin separator.

CS-polyhedron structure can be also observed in some biologically motivated
models of growth under constraints of competition for limited resources [7, 8].
In this case the models can generate both perfectly learning and perfectly anti-
learning data, depending on modeling assumptions. [You quote our ICML
paper on your web page, but I was not able to access it. I’m also
wondering if we could not include this competing species example in
this article; AK19/07 I will try to do it tomorrow. I think I see how
this could be done]

Relation to real life data. As mentioned already in the introduction, the
example of the Aryl Hydrocarbon Receptor used in KDD’02 Cup competition
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Fig. 2. Switch from anti-learning to learning upon non-monotonic transformation of
the kernel, Theorem 2. Plots show independent test set accuracy, average over 30 trials.
For the experiments we have used Hadamard data set S(H128), see Example 1 of Section
2.2, with the gaussian noise N (0, σ) added independently to each data matrix entry.
The data set has been split randomly into training and test sets (respectively two
thirds and one third). We have used the hard margin SVM exclusively, so the training
accuracy was always 1. We plot averages for 30 repeats of the experiments and also
the standard deviation bars. We have used four different kernels, the linear kernel
k1 = klin and its three non-monotonic transformations, kd := (klin − ĉ0)

d, d = 2, 3, 4,
where ĉ0 := meanyi 6=yj

xi·xj

‖xi‖ ‖xj‖ was estimated from the training data.

is unsual: this dataset shows strong anti-learning while modeled by ordinary
two-class SVM, but is “learnable” if non-standard one-class SVM is used, and
this behavior changes abruptly if the continuous transition from one model to
the other is used [9, 11]. In [7] this has been also shown to be the case for
a dedicated CS-polyhedron model, which with an addition noise, reproduces
closely also other results observed for the KDD’02 data.

Anti-learning is not over-fitting. By over-fitting a supervised learning
algorithm we understand a generation of a classifier performing on a level of ran-
dom guessing (with a bias reflecting the class priors, perhaps). Such a classifier
does not allow to discern any useful information for classification of independent
data, providing expected AROC ≈ 0.5. This is not the case of anti-learning. In
its perfect form (Theorem 1) we obtain a predictor f which perfectly misclas-
sify the off-training data, AROC(f, S\T ) = 0, hence its negation, −f , allows to
recover the ordering fully consistent with labels, AROC(−f, T − S) = 1.

Noise Suppresses Anti-Learning. Furthermore, the anti-learning occurs
for a data set, or more generally a kernel, with the special “symmetries”. Ad-
dition of random noise suppresses these symmetries and kills the anti-learning
effect. This is vividly demonstrated in Figure 2, where in tune with the increased
variance of noise in the data, the average AROC on the test set for the linear
SVM increases from ≈ 0 to the average level of random guessing, ≈ 0.5. At the
same time, for the transformed quadratic kernel SVM, for which learning occurs
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in line with the predictions of Theorem 2, the average AROC decreases from
≈ 1 to the average level of random guessing, ≈ 0.5.

Relation to some other Research. Anti-learning should not be mixed
with No-Free-Lunch theorems promoted by Wolpert [15]. The “No-Free-Lunch”
type results make statements about averages across all target concepts (this is the
crux of all its incarnations), while anti-learning deals with a single, very special,
target concepts at a time and makes statements on behavior of wide classes of
algorithms. However, anti-learnable datasets are constructive examples of data
where many standard supervised learning algorithms has high error rate on the
off-training data, a phenomenon envisaged by No-Free-Lunch Theorems.

There are some similarities of this paper with another recent one [14]. Both
studies make use of Hadamard matrices, though in a different way. Also the
both studies discuss problems with using classifiers within the span of the train-
ing set. However, the relation of both studies is not quite clear at this point. After
a quite extensive joint study of the anti-learning problem by one of us (AK) and
both authors of [14] in late 2004 we saw quite a few differences. The four main
differences I (AK) summarize as follows. (i) The paper [14] makes statements
exclusively about regression (squared loss), while this one exclusively about clas-
sification (aroc or acc losses). The study of the square loss for regression for
CS-kernel is full of its own surprises such as the divergence of test loss to infin-
ity, etc., which were not observed in [14]; however, this is beyond scope of this
paper and will be covered by some of our future papers. (ii) Like in the case
of No-Free-Lunch Theorem, claims in [14] are about averages across multiple
learning target concepts and also across both, the combined the training and
the test sets. However, in this paper we are in position to evaluate the perfor-
mance on each of these data sets separately and for a single target concept at
a time. (iii) In [14], the target vector is still part of the data matrix. [I must
say I do not understand the above sentence! It became clearer when I
changed ”there” to ”where”, however, I find it now miss-representing
their research. In theorem 4 they explicitly talk about any embed-
ding, which actually makes feature selection irrelevant] In our setting
we have removed the row corresponding the target vector from the data matrix
and additionally one column, though the latter has a marginal importance. So
formally, we study different problems. (iv) In our study Hadamard matrix is
only one example of CS-polyhedrons displaying anti-learning. This is clear from
the main Theorem 1. Thus our results are applicable to a wider class of datasets.

[Oliver, the stuff you have commented below I do not know why. I
think we are reading this differently. We need to discuss it tomorrow.
AK 19/07]

Deceptive simplicity of classification of CS-polyhedrons. In the per-
fect anti-learning setting two labeled samples are sufficient to classify perfectly
all data. To be concrete, let us consider the perfect anti-learning CS-kernel k
on (xi, yi)i∈S ⊂ RN , see (6). Given two labeled examples, say io and jo, the
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classification rule

x ∈ RN 7→=
{

yjo , if k(xio ,x) = k(xio ,xjo);
−yjo

, otherwise,

perfectly allocates labels the whole space S. However, many well established
“work-horses” of machine learning, such as SVM, ridge regression, perceptron,
voting perceptron, k-nearest neighbours is provably unable to discover solutions
(existing in their hypothesis spaces) doing this task, even when given all but two
points for the training. Thus this is not the problem of “inadequate” hypothesis
space or too poor representation. In fact the algorithms always find rules which
systematically miss-order any two data points of different labels not included in
the training. And boosting these “weak learners” leads to the similar result.

All this can be interpreted as follows. These learning algorithms are unable
to estimate the distribution of labels in the data space, since the samples is too
small. However, they are capable of discerning hidden “patterns” in the data
very efficiently. Thus they learn although in a different way than expected. How
to harness this capability is another issue.

Non-linear classifiers. Theorem 2 shows however, that at least in some sit-
uations, and non-linear transformation of the kernel can convert an anti-learning
task into a learning task. In future we will present also some ensemble based ma-
chine learning algorithms capable achieving this goal as well.

Relation to Machine Learning Theory. Anti-learning is relevant to
special cases of the classification, when inference is to be done form a very small
training sample from a very high dimensional space. This occurs especially in
bio-informatics [9, 11, 8, 7]. It is worth to note that this is the regime where
ordinary machine theory and statistics is void. In particular, this paper does
not contradict the VC theory [13] which states that the training error and the
test error should be close to each other when the number of training samples is
significantly larger than the VC dimension (i.e. capacity) of the learning system.
In all the anti-learning examples we encountered here the number of learning
examples is always not larger than the number of dimensions (i.e. VC-dimension).

Learning Distributed Concepts An interesting observation on anti-learning
has been made by J. Langford [10], where anti-learning is linked to learning con-
cepts which are distributed, rather than concentrated.

[AK 20/07: This bit is the direct response to the programm Com-
mittee closing remarks]

Final Summary. This study is a primarily introduction to a phenomenon
of anti-learning. We have concentrated on a very simple synthetic data set for
which anti-learning can be demonstrated formally for a large classes of learning
algorithms. This dataset class is so simple that it can be analyzed analytically,
but it is also reach enough to demonstrate unexpected and novel behavior of
many “standard” learning algorithms. But we must stress, that the motivation
for this research comes from real life cancer genomic data sets (unpublished at
this stage) which consistently display anti-learning behavior. Obviously, this is
not exactly the perfect anti-learning, but rather a consistent performance below
random guessing in independent tests. So this paper is an initial step in an
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attempt to understand properties of some real datasets and ultimately to work
out the practical ways to deal with such non-standard leaning problems. Its aim is
also to build awareness and initial acceptance for this class of learning problems
and to encourage other researchers to come forward with datasets which do
display such “counter-intuitive” properties, rather than dismissing them as non-
sense. (This last point reflect also our personal experience.)

We do not draw any definite conclusions in this paper, as to whether and how
anti-learning data sets should be dealt with. It is too early for that. Our Theorem
2 says how to deal with some classes of anti-learning data, i.e. the CS-kernels or,
equivalently, of CS-polyhedrons. However, such transformations are ineffective
for noisy real life anti-learning data we are interested in. Thus alternative, more
robust techniques to deal with this issue are still to be researched and potentially
to be developed. We would like to add that the standard approach to learning
from a small size sample, namely aggressive feature selection, does not solve the
problem, at some real life cases at least. In particular, this is demonstrated by
experimental results reported in [8, 11].

Future Research. There is a number of directions this research can be
extended to in future. We shall list some of our current preferences now.

1. Identify and research novel examples of anti-learning datasets, both synthetic
and natural.

2. Develop techniques for consistent classification of anti-learning data.
3. Research techniques capable of seamless learning from both learnable and

anti-learnable datasets.
4. Study the problem of regression (square loss) for the anti-learning datasets.
5. Research iid sampling models, in particular learning curves, for the anti-

learning datasets.

Conclusions

Anti-learning does occur in some machine learning tasks when inference is done
from very low sample sizes in high dimensional feature spaces. This warrants
radical re-thinking of basic concepts of learnability and generalization which are
currently totally biased towards the “learning mode” of discerning the knowledge
from data. It also warrants further research into theoretical analysis and devel-
opment of practical methods for dealing with anti-learning problems, since such
do occur in important real life applications. [Ak20/07: an extra sentence
was added]
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Appendix: Proof of Lemma 1, Section 2

[I’ve changed a bit the proof as I think it was not correct (or at least
not clear)] Equivalence (ii) ⇐⇒ (iii) is a standard linear algebra result. The
vectors zi can be found with a Cholesky decomposition of k. Note that they are
linearly independent if and only if the Gram matrix k is is non-singular.
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We prove the crucial equivalence (i) ⇐⇒ (ii) now. In order to simplify the
notation, without lost of generality we may assume that r2 = 1. Let us assume
that indices are ordered in such a fashion that yi = +1 for 1 ≤ i ≤ n+ and
yi = −1 for n+ < i ≤ n+ + n−. The kernel matrix can be written as follows

k = [kij ] =
[

(1− c+)In+ + c+ c0

c0 (1− c−)In− + c−

]
,

where In is the (n×n) identity matrix. First we observe that k being symmetric
has n++n− linearly independent eigenvectors with real eigenvalues. Now observe
that for any vector v = (vi) = ((v+,i), 0) ∈ Rn+ × Rn− such that

∑n+
i=1 v+,i = 0

we have kv = (1− c+)v. Thus this is an eigenvector with eigenvalue λ = 1− c+.
Obviously the subspace of such vectors has dimensionality (n+−1). Similarly we
find (n− − 1) dimensional subspace of vectors of the form (0,v−) ∈ Rn+ × Rn−

with eigenvalues λ = 1− c−.
The remaining two linearly independent eigenvectors are of the form v =

(v+, ..., v+, v−, ..., v−) ∈ Rn+ × Rn− , where v+, v− ∈ R. For such a vector the
eigenvector equation kbv = λv reduces to two linear equations:

[
n+D+ − λ n−c0

n+c0 n−D− − λ

] [
v+

v−

]
= λ

[
v+

v−

]
.

This 2 × 2 matrix has positive eigenvalues if and only if its determinant and
trace are positive or equivalently if D+D− > c2

0 and Dy > 0, y = ±1. ut


